Science Distilled: HIV research recap

February’s Sac Science Distilled at Old Ironsides featured two HIV researchers from UC Davis: Dr. Lauren Hirao and Brenna Kiniry. You can learn a little more about them and their lives as scientists in our preview post here. Talking to Lauren and Brenna, they both have similar views of what it takes to communicate about hot topics like HIV. They find it important to talk to people as equals and understand where they are coming from. Without taking the time to build a background, it can be hard to bridge gaps in knowledge.

poster_scidist_feb2017_v2

The event kicked off with the scientists sharing some FAQ about their experiences in talking about science. On the whole, the public cares a lot about HIV/AIDS, but sometimes unclear information can lead to inaccurate beliefs. By sharing these preconceptions the speakers ensured the room, full of people from myriad backgrounds, could start the talk on the same page. They also made sure the audience understood the fundamentals of the virus and its global distribution before moving onto sharing research.

Brenna began by teaching the audience about how far treatment and education have come since the virus was first identified in the 1980s. The main concept here is the “cascade of care”. This means that for HIV-positive patients to lead healthy lives, it is essential for them to: be properly diagnosed, receive consultation and care, receive ongoing care, and have continued access to antiretroviral drugs. At any of these stages, patients can lose control of the infection and progress to AIDS. So, effective treatment must take a holistic view of the process; a great anti-HIV drug isn’t going to help much if the people who need it are not getting diagnosed or entering care programs. In fact, Brenna said it is estimated that 1 in 8 HIV-positive people are not aware of their infection. She talked about how important education is in improving that number, and how historical records of infections and mortality show that education really does have a tremendous impact on saving lives from this disease.

We learned about how a perfect cure—one that is safe, effective, and affordable—has not yet been achieved, but that 16 FDA trials are currently underway to test better and better treatments. There was a lot of excitement about how new developments with CRISPR technology could even lead to patients’ own immune cells being modified to help eradicate the virus from their bodies. It’s not going to be showing up in doctor’s offices tomorrow, but it is an exciting possibility.

After Brenna’s segment, the Powerhouse Science Center led us all in an activity to meet our neighbors and see firsthand how quickly an “infection” can travel through a crowd. While we were fortunate enough to have our “infection” be a cup of slightly alkaline water, the exercise still got all the 40-odd participants up, talking, and mixing our cups. Once everyone had figured out who got infected by the original 3 carriers (most people after only 3 exchanges!), Dr. Lauren Hirao took the stage to speak about HIV vaccines.

Lauren did her PhD research on vaccines, specifically ones containing DNA that could be active against HIV, and gave us an overview of the field. Since, “science education is better when it’s anthropomorphized,” she started out with some great cartoons to illustrate the normal immune response to an infection, and how that differs for HIV. She explained a lot of the different challenges, both in biology and in financing, that researchers like her face. Although a prominent HIV researcher claimed in 1984 he believed there would be a vaccine by 1986, Lauren told us about why that has not yet happened and why they have not lost hope.

Research has uncovered more and more complexity over the years, and each new discovery leads to more potential targets. While many of these targets deserve careful study, bringing a vaccine through trials can be prohibitively expensive. Combined with the fact HIV is a rapidly-evolving virus, making a good vaccine becomes quite difficult. It means you must consider the diversity of the target, its evasion from your immune system, and the opportunity your body has to create the right response to the vaccine. Many vaccine trials have taken place over the years, and Lauren told us about some of the more noteworthy ones. While many have had little impact on people’s infection rates in the real world, new ideas are being developed and studied constantly. One class of vaccines that seems to do well across a wide diversity of HIV varieties is broadly neutralizing antibodies. These, as well as other types of vaccines like the DNA ones Lauren studied, are showing promise for the future.

Lauren closed by telling us that there was recently another claim made about the time to an effective HIV vaccine. This time it was Bill Gates suggesting it could be achieved by 2030. While it will still take a tremendous amount of hard work, the discoveries and enthusiasm shared by our speakers made it seem like an important, achievable goal.

Mark your calendars for the next talks on March 15, when we’ll hear from two UCD researchers about the hidden world of parasites in plants and animals- and check out our new location at Streets Pub and Grub!

poster_scidist_march2017

About the author:

Eric Walters is a PhD student at the University of California in Davis. For more content from the UC Davis science communcation group “Science Says“, follow us on twitter @SciSays

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s